Физика в моей будущей профессии эссе. Внеклассное мероприятие по физике «Физика в моей будущей профессии

Интегрированное обучение

Интегрированное преподавание курса в школе, внеклассная работа, элективные курсы, дополнительное образование

Задумайтесь на несколько мгновений:

Зачем на свете физика нужна?

Зачем мы учим эту дисциплину?

Поможет в жизни нам она!

Скачать:


Предварительный просмотр:

Физика в поэзии и прозе

Поэты и писатели умеют видеть окружающий мир и образно описывать его. Во многих литературных произведениях мы встречаемся с различными явлениями природы в художественном воображении авторов. Физик, читая такие места, не может удержаться, чтобы не рассмотреть такие небольшие отрывки из произведений как задачи с физическим содержанием. Некоторые из них могут оказаться весьма непростыми - надо хорошо подумать, чтобы ответить правильно. Следовательно, есть возможность одновременно наслаждаться как художественными формами, так и красивыми решениями.

Начнем с поэзии.

Прочитайте отрывок из стихотворения И. Сурикова «Зима»:

«Стали дни коротки,

Солнце светить мало,

Ой, пришли морозы

И зима настала.»

Почему с наступлением зимы дни становятся короче?

  • В известном стихотворении "Зимнее утро" великий русский поэт Александр Пушкин хорошо описывает зимние пейзажи и одновременно, сам того не зная, ставит много интересных вопросов для любителей физики.

Послушайте и самостоятельно сформулируйте несложные физические задачи.

«Под голубыми небесами

Великолепньимы коврами,

Блестя на солнце, снег лежит;

Прозрачньий лес один чернеет,

И ель сквозь иней зеленеет,

И речка подо льдом блестит.»

Сколько здесь описано явлений и из какого раздела физики?

  • Воспевал природу также и Юрий Лермонтов. Лермонтовский пророк, гонимый и презираемый толпой, все же знает цену счастья.

«И звезды слушают меня,

Лучами радостно играя.»

Может кто-нибудь объяснить, как отличить на небе звезду от планеты?

Перейдем к прозе .

  • В. Короленко в произведении «На затмении» описывает такой пейзаж:

«День начинает заметно бледнеть. Лица людей принимают страшный оттенок, тени человеческих фигур лежат на земле бледные, неясные... Однако, пока остается тонкий серповидний ободок солнца, все еще царит впечатление сильно побледневшего дня... Но вот эта искра исчезла... Круглое, темное, враждебное тело, словно паук, впилось в яркое солнце...»

Почему тени стали бледными и нечеткими?

  • Михаил Пришвин так описывает охоту в одном из своих произведений:

«Мы идем с Ладой - моей охотничьей собакой - вдоль небольшого озерка. Вода сегодня такая, что летящий кулик и его отражение в воде были совершенно одинаковы: казалось, летели нам навстречу два кулика... Лада наметилась. Какого она выберет себе: настоящего, летящего над водой, или его отражение в воде - оба ведь схожи между собой как две капли воды. Вот бедная Лада выбирает себе отражение и, наверно думая, что сейчас поймает живого кулика, с высокого берега делает скачок и бухается в воду. А верхний, настоящий кулик улетает».

Догадываетесь, из какого произведения Пришвина взят этот отрывок?

А теперь физическая задача: Есть ли отличие между предметом и его отражением?

  • А вот отрывок из повести А.П. Чехова «Степь»:

«Егорушка... разбежался и полетел с полуторасаженной высоты. Описав в воздухе дугу, он упал в воду, глубоко погрузился, но дна не достал; какая-то сила, холодная и приятная наощупь, подхватила и понесла его обратно наверх».

О какой силе идет речь?

А вот четверостишье на украинском языке

Из стихотворения великого Тараса Шевченко:

«Вітер з гаєм розмовляє,

Шепче з осокою,

Пливе човен по Дунаю

Один за водою.»

Какие физические задачи можно увидеть в этом стихотворении? Конечно, здесь можно рассмотреть различные вопросы. Пожалуй, наиболее интересными являются следующие:

Первая задача - о ветре. Почему, как точно подметил поэт, «ветер с рощей разговаривает», а с осокой «шепчет»?

Вторую задачу можно обобщить так. Почему течение сносит лодку вниз по течению?

Использованная литература:

Бабин А.С. Фізика в літературних творах //Все для вчителя №6, 2002, Березень

Предварительный просмотр:

Физика в профессии строителя

Мы уверены, что у каждого из присутствующих имеется дом. Будь то частный дом, либо квартира. В разное время года свой дом защищает нас от разных климатических воздействий: жары, дождей, холода и т.д. Многие считают это чем-то обыденным и само собой разумеющимся свойством дома или квартиры, но далеко не многие задумываются или интересуются как же строители, каким способом они создают такой комфорт?!

Строительная физика - совокупность научных дисциплин, рассматривающих физические явления и процессы, связанные со строительством и эксплуатацией зданий и сооружений, и разрабатывающих методы соответствующих инженерных расчётов. Основными и наиболее развитыми разделами Строительной физики являются строительная теплотехника, строительная акустика, строительная светотехника. Получают развитие и др. разделы. Становление Строительной физики как науки относится к началу 20в. До этого времени вопросы Строительной физики обычно решались инженерами и архитекторами на основе практического опыта.

Перспективы дальнейшего развития Строительной физики связаны с использованием новых средств и методов научных исследований. Так, например, структурно -механические характеристики материалов и их влажностное состояние в конструкции зданий изучаются с помощью ультразвука, лазерного излучения, гамма-лучей, с применением радиоактивных изотопов и т.д.

Методы строительной физики основаны на анализе физических процессов, происходящих в ограждениях и в окружающей их среде. Для них используют лабораторные и натурные исследования этих процессов с использованием математических методов физического моделирования.

На каждое строительное сооружение действуют многочисленные силы, например, силы сжатия и растяжения. Эти силы нагружают строительное сооружение. Поэтому их называют нагрузками. Нагрузки происходят за счет самого сооружения и могут быть обусловлены внешними воздействиями. Различают постоянные и временныенагрузки

Наружные ограждающие конструкции зданий должны удовлетворять следующим теплотехническим требованиям: обладать достаточными теплозащитными свойствами, чтобы не допускать излишних потерь тепла в холодное время года и перегрева помещений летом в условиях жаркого климата; температура внутренней поверхности ограждения не должна опускаться ниже определенного уровня, чтобы исключить конденсацию пара на ней и одностороннее охлаждение тела человека от излучения тепла на эту поверхность; обладать воздухопроницаемостью, не превосходящей допускаемого предела, выше которого чрезмерный воздухообмен снижает теплозащитные свойства ограждений, приводит к дискомфорту помещений и излишнимтеплопотерям; сохранять нормальный влажностный режим в процессе эксплуатации здания, что особенно важно, поскольку увлажнение ограждения снижает его теплозащитные свойства и долговечность.

Естественное освещение можно обеспечить через окна в наружных стенах, через световые фонари и свето - прозрачные покрытия, а также использовать в строительстве фонтанов.

Экологический дом – это качественное, долговечное, доступное индивидуальное жильё. Использование натуральных, природных материалов позволяет создать благоприятный для здоровья микроклимат дома.

Кроме того, доступность материала выгодно влияет на стоимость строительства. При соблюдении технологий и высоком качестве работ, срок эксплуатации дома очень велик. Процесс строительства не требует излишних трудозатрат.

Предварительный просмотр:

Физика в профессии железнодорожника

Летом мы много путешествовали, используя, в том числе и железнодорожный транспорт. Большое количество людей отдает ему предпочтение, он используется для грузоперевозок, для транспортировки различного оборудования и техники.

Сегодня невозможно представить себе жизнь современного человека без быстрой и надёжной связи между людьми, живущими в разных городах и странах. Иногда можно спокойно дожидаться новостей, неторопливо путешествуя в почтовой карете, но бывают обстоятельства, например во время войны, когда связь должна быть молниеносной, ведь во время боевых действий, как известно, “промедление смерти подобно”.

В настоящее время широко используются электрические железные дороги. И здесь без знаний физики не обойтись. Электрические железные дороги получают электрическую энергию от энергосистем, объединяющих в себе несколько электростанций. Электрическая энергия от генераторов электростанций передается через электрические подстанции, линии электропередачи различного напряжения и тяговые подстанции. На последних, электрическая энергия преобразуется к виду (по роду тока и напряжения) используемому в локомотивах, и по тяговой сети передается к ним. Здесь работают законы электростатики, электродинамики, электромагнетизма.

Надежность работы электрифицированных дорог зависит от надежности работы системы электроснабжения. Поэтому вопросы надежности и экономичности работы системы электроснабжения существенно влияют на надежность и экономичность всей электрической железной дороги в целом.

Обмен служебной информацией и командами управления между локомотивом и хвостовым вагоном по цифровому радиоканалу диапазона 160 Мгц /мегагерц/ осуществляется посредством спутниковой связи.

Мы живем в век новых информационных технологий, информация обновляется очень быстро и надо успевать идти в ногу со временем. Настоящим открытием явилась физика полупроводников,в т.ч. и на железнодорожном транспорте.Пожалуй, самым удивительным является изобретение гетероструктур. Оно принадлежит Российскому академику Жоресу Ивановичу Алфёрову.

Благодаря его открытиям появилась возможность развития телекоммуникаций и информации на железной дороге.

Эффективность работы железных дорог опирается на внедрение новых принципов и методов управления с применением современных информационных технологий и создание единого инфокоммуникационного пространства отрасли.

Для этого необходимо строительство единой магистральной цифровой сети связи. Общая протяжённость волоконно-оптических линий связи составляет более 52 тыс. км.

Целью проекта является внедрение перспективных технологий во все сферы деятельности федерального железнодорожного транспорта.

На магистральную цифровую сеть связи накладывается глобальная сеть передачи данных, и на её основе осуществляется введение телекоммуникационных технологий. Это позволяет управлять подвижным составом на больших перегонах из создаваемых центров диспетчерского управления перевозками. Наиболее эффективными являются автоматизированные системы учёта и управления вагонным, локомотивным, контейнерным парками, управления пассажирскими перевозками, оформление и ведения перевозочных документов.

Знания электроники электротехники позволяют профессионально использовать приборы управления различными системами.

Предварительный просмотр:

Физика в искусстве

Великая поэзия нашего века – это наука с удивительным расцветом своих открытий.
Э. Золя

Физика и искусство… Кажется, они не совместимы. Однако это не так, и сегодня мы попытаемся это доказать. Представители искусства, порой и сами этого не зная, используют для своих творений физические закономерности. А физики… они любят и ценят искусство, которое пробуждает их творческую мысль, вдохновляет и тем самым помогает постигать тайны природы.

А. Эйнштейн в минуты отдыха играл на скрипке; Д. Ландау любил читать стихотворения Лермонтова и Байрона; М. Планк и В. Гейзенберг были отличными пианистами; создатель первого в мире ядерного реактора И.В. Курчатов часто посещал симфонические концерты и за три дня до смерти слушал "Реквием" Моцарта в консерватории, виднейший русский писатель XIX в. А.И.Герцен окончил физико-математический факультет Московского университета и специализировался в области астрономии.

Физика и живопись

Науку и искусство объединяют стремления к познанию и к творчеству. Последнее означает создание новой информации, реализуемое практически, а не путем логического рассуждения.

  • Сложность структуры цвета, разнообразие цветов и их оттенков;
  • Оптика;
  • Физика и реставрационная техника.

Первым понял «устройство» радуги И.Ньютон, он показал, что «солнечный зайчик» состоит из различных цветов.

Позднее физик и талантливый музыкант Томас Юнг покажет, что различия в цвете объясняются различными длинами волн. Юнг является одним из авторов современной теории цветов наряду с Г.Гельмгольцем и Дж.Максвеллом. Приоритет же в создании трехкомпонентной теории цветов (красный, синий, зеленый – основные) принадлежит М.В.Ломоносову, хотя гениальную догадку высказывал и знаменитый архитектор эпохи Возрождения Леон Батиста Альберти.

Одним из важнейших факторов в живописи является «Оптика»: линейная перспектива (геометрическая оптика), эффекты воздушной перспективы (дифракция и диффузное рассеяние света в воздухе), цвет (дисперсия, физиологическое восприятие, смешение, дополнительные цвета). Полезно заглянуть и в учебники живописи. Там раскрыто значение таких характеристик света, как сила света, освещенность, угол падения лучей.

Различные ощущения света и цвета можно описать при изучении глаза, рассмотреть физическую основу оптических иллюзий, самой распространенной из которых является радуга.

Физика и реставрационная техника

Методы: рентгенографии, фотографирования в ИК-лучах, спектрографии и микрохимического анализа, макрофотографии – съёмка на довольно большом расстоянии через сильно увеличивающий объектив позволяет выявить «почерк» художника, т.е. движение кисти, манеру наложения красок.

Физика и скульптура

Физика искусства в кинетических скульптурах Дэвида Роя

Энергия ни от куда не берётся и ни куда не исчезает просто так. Представим биллиардный стол. Мы ударим по белому шару и он полетит в красный. Шары столкнутся. Белый остановится и передаст свою энергию красному, а красный полетит от этой энергии дальше. Если бы красному шару ничего не мешало, то он летел бы бесконечно. Но его тормозит трение о стол и даже сопротивление воздуха, поэтому он замедляется и останавливается исчерпав всю энергию на сопротивление.


Подписи к слайдам:

Физика в разных профессиях. Выполнила ученица 9 класса А Олейник Анастасия

Физика в профессии музыканта. Есть ли что-нибудь непоющее в этом мире? Звуковые явления. Основные характеристики музыкальных звуков: громкость, высота тона, тембр. Звучание камертона. Звучание голосовых связок.

Физика в профессии врача. Манометр - прибор, измеряющий давление. Термометр - прибор,измеряющий температуру.

Физика в профессии водителя. Знание физики в профессии водителя связано с устройством и работой автомобиля, безопасностью движения, грамотной эксплуатацией автомобиля. Аккумулятор. Генератор.

Физика в профессии повара. Кухонные установки, основанные на явлении теплопроводности; на кипении воды при различных давлениях; установки с моторами; установки, основанные на совместном применении рычага, ворота, винта. Миксер. Пароварка.

Описание работы

История физики тесно связана с историей общества. Это вполне естественно, поскольку физика как любая наука является важной составляющей культуры, а научное развитие, безусловно, определяется развитием цивилизации в целом. Причем физика в большой степени и зависит от уровня развития, и обусловливает развитие производительных сил общества. В связи с этим развитие физики определяется развитием, как материальной культуры, так и общей, духовной культуры. Отметим, что духовная культура должна пониматься в самом широком смысле, т.е. включать в себя образование, идеологию, государственное устройство.
Экономика предприятия – образовательная и научная дисциплина, в которой излагаются методы и правила хозяйственной деятельности производственной организации.

Файлы: 1 файл

Министерство образования РФ

Федеральное агентство по образованию

Иркутский государственный технический университет

Кафедра физики

Реферат

«Роль физики в моей профессии»

Выполнила: ст-ка гр. ЭУП-09-1 Домнина Д. Р.

Проверил: д.т.н., профессор

Коновалов Н.П.

Иркутск, 2010

ВВЕДЕНИЕ

История физики тесно связана с историей общества. Это вполне естественно, поскольку физика как любая наука является важной составляющей культуры, а научное развитие, безусловно, определяется развитием цивилизации в целом. Причем физика в большой степени и зависит от уровня развития, и обусловливает развитие производительных сил общества. В связи с этим развитие физики определяется развитием, как материальной культуры, так и общей, духовной культуры. Отметим, что духовная культура должна пониматься в самом широком смысле, т.е. включать в себя образование, идеологию, государственное устройство.

Экономика предприятия – образовательная и научная дисциплина, в которой излагаются методы и правила хозяйственной деятельности производственной организации.

Основная задача, которую решает управленческий персонал предприятий, заключается в том, чтобы каждый вложенный в производство рубль не только окупался в полном объеме, но и приносил дополнительный доход. Профессиональный экономист как основное лицо в структуре хозяйственного управления в достаточной мере должен обладать знаниями о реальных процессах и механизмах производства и обращения товаров, позволяющими избегать ошибок и гарантировать успех дела.

  1. ВЗАИМОСВЯЗЬ РАЗВИТИЯ ФИЗИКИ И КУЛЬТУРЫ

Связь физики с развитием общества прослеживается на протяжении всей истории развития цивилизации. Эта связь не всегда носит однозначный характер, что обусловлено, прежде всего, естественным отставанием реализации тех или иных возможностей от потребностей общества. С другой стороны, на определенных стадиях физика как мощная ветвь дерева цивилизации начинает развиваться уже по своим собственным законам, слабо связанным с развитием общества в целом.

По мере развития материального производства в древнем мире идет накопление знаний в области естествознания. Но в древнем Египте, Месопотамии, Индии и Китае эти знания не были систематизированы. Для развития физики, безусловно, важным является и уровень духовной культуры общества, который необходим для обобщения данных наблюдений, появления новых физических идей и представлений, создания стройной системы знаний. Особенно отчетливо это просматривается в истории физики античного мира.

Определенные ценные знания по отдельным вопросам естествознания были у шумеров, вавилонян и египтян, но они носили случайный характер. И только после появления "чистых наук" - философии и математики в Древней Греции стали возможны систематические работы по описанию и объяснению явлений природы. При этом естественно использовались экспериментальные наблюдения, накопленные в процессе развития материальной культуры. Достижение высокого общего культурного уровня в Греции при наличии обширного комплекса знаний и технических навыков обеспечило в 4 веке до н.э. начало работ по описанию, упорядочению и объяснению явлений природы. Поэтому именно в это время у Аристотеля в его натурфилософских работах появляется само понятие "физика" и закладываются основы физического мышления. Подход Архимеда и других древнегреческих ученых к решению физических проблем основывался на простых, но строгих геометрических доказательствах, так что математика стала основным интеллектуальным орудием физики.

Следует отметить, что достижения александрийских механиков 2-1 веков до н.э. позволяли создавать очень нужные и полезные технические устройства. Но отсутствие соответствующей производственной базы задержало реализацию этих изобретений до 2-4 веков, когда они частично использовались при интенсивном строительстве в Римской империи, а внедрение подавляющего большинства изобретений затянулось до эпохи Возрождения.

После распада Римской империи в Европе наблюдается экономический упадок. Это определило то, что в средневековье там практически не наблюдалось развитие физики. Важным фактором, определившим развитие науки, явилось появление новых религий: христианства и ислама.

Возникающие новые господствующие идеологии очень ревниво и враждебно относились к культурному наследию прошлого, философии и естественнонаучным трудам. В конце 4 века под руководством александрийского архиепископа Феофила был организован разгром части Александрийской библиотеки, а в начале 5 века по указанию патриарха Кирилла был осуществлен разгром Александрийского музея, а также убиты многие его профессора. В 529 г. император Византии Юстиниан закрыл последнюю философскую школу в Афинах, а римский папа Григорий I специальным постановлением запретил чтение древних книг и занятие математикой и философией. Арабам же приписывают окончательное сожжение Александрийской библиотеки в 640 г.

По мере усиления и расцвета арабских государств ислам становится более терпимым, начинается ассимиляция культур и в арабском мире наблюдается развитие науки, поэтому достижения средневековой физики в основном связывают с арабскими учеными. При этом следует говорить об изменении отношения именно государств, а не религии, поскольку последняя крайне нетерпима к развитию науки, получению новых объективных знаний. Для ортодоксальных религиозных идеологий главным является беспрекословное следование догмам, послушание, а не результат, и религия на протяжении практически всей истории негативно относилась к развитию физики и естествознания в целом.

В связи с этим в средневековой Европе, где католическая церковь имела огромную власть, даже после создания университетов развитие науки в них носит сугубо схоластический характер. И лишь после начала эпохи Ренессанса, возрождения как материальной, так и духовной культуры наблюдается отказ от схоластического мышления в науке и появляются основоположники экспериментального метода в физике - Леонардо да Винчи и Галилео Галилей. Происходящая в это время промышленная революция, применение машин в мануфактурном производстве ставит новые проблемы перед физикой. Достижения античной статики уже практически исчерпаны, и в отличие от техники древности, где в основном использовалась наука о равновесии, в технике мануфактурного периода вперед выходит задача освоения и передачи механического движения. Такие задачи в полной мере решает созданная в 17-18 веках классическая механика.

Промышленная революция в 19 веке дополнительно стимулировала развитие физики. При этом, прежде всего, следует отметить влияние практического использования паровой машины и потребности ее совершенствования на развитие термодинамики. А успехи учения о теплоте в свою очередь способствовали развитию теплотехники во второй половине 19 века, поскольку конструкторы новых тепловых машин - двигателей внутреннего сгорания опирались на теоретические положения термодинамики.

Также необходимо сказать о бурном развитии электротехники в 19 веке, где широко и активно использовались открытия Вольта, Ампера, Фарадея и других физиков в области электромагнетизма. При этом следует подчеркнуть, что пути и сроки реализации технических применений различных физических открытий могут быть разными, поскольку развитие техники происходит по своим внутренним законам. Например, применения электричества для передачи сигналов на расстояния предлагали Вольта, Ампер и другие исследователи. Но реализация телеграфа стала возможна лишь после удачного предложения в 1832 г. телеграфного алфавита американским изобретателем Самуилом Морзе (1791-1872).

После завершения построения классической физики развитие современной физики в большей степени происходило по объективным законам собственной логики. Так, и теория относительности, и квантовая физика возникли вследствие необходимости преодоления внутренних противоречий в физике, которые не могли быть разрешены в рамках классической теории. И теперь уже достижения квантовой и ядерной физики в 20 веке стимулировали развитие техники и обеспечили полномасштабную научно-техническую революцию в материальном производстве.

Влияние развития культуры на физику также не носило односторонний характер. Помимо влияния физики на промышленную и научно-техническую революции 19 и 20 веков, физика активно и глубоко проникала и в процессы духовного формирования общества. Это, прежде всего, развитие во многом определяющих современную духовную культуру средств связи и массовой информации, появление которых было бы невозможно без достижений физики. А успехи атомной и ядерной физики 20 века в огромной степени обусловили изменение сознания общества в различных направлениях, начиная с политики и кончая экологией.

Необходимо отметить еще один аспект связи физики и общества: влияние государственного устройства на развития физики, что наиболее наглядно проявилось в 20 веке. В основном успехи физики определялись достижениями ученых в демократических государствах, а тоталитарные режимы вынуждали, как правило, эмигрировать представителей научной элиты (Россия, Италия, Германия). Но эта связь не является однозначной, поскольку в тоталитарных государствах на решении ряда научно-технических проблем (в особенности по вопросам совершенствования военной техники) сосредотачивались огромные материальные и людские ресурсы. Причем очень большое внимание уделялось развитию физического образования в массовом масштабе. А уже по закону больших чисел здесь всегда находились ученые, которые успешно занимались не только задачами прикладного характера, но и делали фундаментальные открытия.

2. РАЗВИТИЕ ОРГАНИЗАЦИИ НАУЧНЫХ ИССЛЕДОВАНИЙ

Зарождение физики и первые ее успехи в определяющей степени связаны с тем, что в античном мире были созданы первые научные и образовательные центры: аристотелевский Ликей и Александрийский музей. Оба эти заведения организовывались и существовали при всесторонней поддержке тогдашних государственных руководителей: Александра Македонского и правителей династии Птолемеев. Такая поддержка подразумевала полное государственное обеспечение и создавала необходимые условия для развития творчества. В арабском мире, как и в элиннскую эпоху, основные естественнонаучные исследования сосредотачивались в придворных школах.

С появлением университетов в средневековой Европе научная деятельность начинает концентрироваться там, а также продолжаются исследования ученых при дворах феодальных правителей. Понятия ученый и профессор университета, как правило, совпадали. При этом основной обязанностью профессора университета было обучение, а научная деятельность проводилась исключительно по личной инициативе при практической свободе творчества.

Важным моментом, определившим развитие и распространение науки, является создание научных академий.

В 1560 г. Порта организовал в Италии первую академию - Академию тайн природы. Но это не была настоящая академия с соответствующими органами и статутом, а скорее периодические собрания в доме Порты.

В 1603 г. в Риме состоялось первое заседание Академии Деи Линчей целью, которой было изучение и распространение научных знаний. С 1611 г. членом Академии был Галилей. До 1630 г. Академия процветала, публиковала важные научные работы, выступала с открытой защитой учения Галилея. Но после смерти одного из активнейших организаторов Академии Федерико Чези (1585-1630) деятельность ее практически прекратилась. Уже в 18 веке и позже в постоянной борьбе с церковью неоднократно предпринимались попытки воссоздания и преобразования Академии. В итоге в 1939 г. она слилась с распущенной Итальянской академией, а в 1944 г. преобразована в Национальную академию Деи Линчей.

Вернувшись в 1644 г. из Италии в Англию Бойль стал инициатором объединения ученых-исследователей. С 1645 г. в Лондоне и Оксфорде начала действовать "невидимая коллегия", которая в 1660 г. была официально преобразована в "Королевское общество для развития познания". Это общество и по сей день играет роль Английской Академии наук. По примеру "Королевского общества" в 1663 г. в Париже была основана "Академия точных наук".

И Королевское общество, и Парижская академия были созданы по образцу Академии опытов, основанной в 1657 г. князем Леопольде Медичи. Подобно Академии Деи Линчей она организовывалась для пропаганды науки и должна была расширять физические знания путем коллективной экспериментальной деятельности своих членов по методу Галилея. Она имела в своем составе действительных членов, а также итальянских и иностранных членов-корреспондентов. Академия опытов публиковала результаты своей деятельности: в 1667 г. вышла работа ученого секретаря Магалотти "Очерки о естественнонаучной деятельности Академии опытов", а в 1680 г. во Флоренции Джованни Тарджони Тодзетти были опубликованы в четырех томах "Труды и неизданные отчеты Академии опытов". В Академии опытов были получены важные результаты: улучшен термоскоп Галилея и создан спиртовой термометр, исследовано расширение тел при нагревании, начаты систематические метеорологические наблюдения, проведены исследования движения тел в пустоте и в воздухе, электрических явлений, звука, цвета и др.
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Физика – это наука о природе в самом общем смысле. Она изучает механические, электрические, магнитные, тепловые, звуковые и световые явления. Физику называют “фундаментальной наукой”. Поэтому ее законы используются практически во всех направлениях: медицине, строительстве, во всех областях, связанных с техникой, в электронике и электротехнике, оптике, астрономии, геодезии и т.д.

Физика в строительстве

Строительная физика детально изучает явления и процессы, связанные со строительством и эксплуатацией зданий и сооружений. Эти явления и свойства характеризуются физическими величинами. Строительная деятельность неразрывно связана с определенными условиями среды: температура, влажность, состав воздуха, плотность вещества.

Сначала нужно изучить местность, где будет проходить строительство. Этим занимаются геодезисты. Инженерная геодезия изучает методы и средства геодезических работ при проектировании, строительстве и эксплуатации различных инженерных сооружений. Задачи геодезии решаются на основе результатов специальных измерений, выполняемых с помощью геодезических приборов, так как необходимо оценить участок предполагаемого строительства. необходимо получить информацию о рельефе местности. Все эти расчеты служат основой для проектирования сооружений и зданий. И здесь никак не обойтись без законов физики!

Физика в профессии Архитектора

Профессия архитектора предполагает архитектурное проектирование на профессиональном уровне. В обязанности специалиста входят организация архитектурной среды, проектирование зданий и разработка объемно-планировочных и архитектурных решений.

В архитектуре большое значение имеют законы физики которые помогают рассмотреть роль понятий УСТОЙЧИВОСТЬ, ПРОЧНОСТЬ, ЖЕСТКОСТЬ КОНСТРУКЦИЙ, а также роль перекрытий и фундамента в строительстве зданий, деформацию элементов сооружений и расчет. Использование законов статики при

Физика в профессии врача

В настоящее время обширна линия соприкосновения физики и медецины, и их контакты все время расширяются и упрочняются. Нет ни одной области медицины, где бы ни применялись физические приборы для установления заболеваний и их лечений.

Важнейшей частью организма человека является кровеносная система. Действие кровеносной системы человека можно сравнить с работой гидравлической машины. Сердце работает подобно насосу, который гонит кровь через кровеносные сосуды. Во время сжатия сердца кровь выталкивается из сердца в артерии, прохо­дит через клапаны, не пускающие ее обратно в сердце. Затем оно расслабляется и в продолжение этого времени наполняется кровью из вен и легких. Открытие простых способов измерения кровяного давления облегчило врачам возможность распознавать болезни, признак которых - ненормальное давление крови.

Физика в профессии повара

Очень важными разделами физики для повара являются молекулярная физика и термодинамика. Как говорится- хороший результат случайным быть не может... Так, для приготовления хорошего бифштекса, необходимо его положить на горячую сковороду и добавить небольшое количество жира или масла.

Масло закупорит отверстия в мясе и оно приготовится сочным

Физика в профессии фотографа

Профессия фотографа тесно связана с наукой “Физика”.

Такие понятия как фокус, линза и т.п. относятся к этой профессии.

Главным элементом аппаратуры является линза. Без нее не было бы ни микроскопа, ни телескопа, ни очков... А это значит, что Многие люди, которым за 50, не могли бы читать, биологи изучать клетку, а астрономы космос.

Физика в професии инженер по ядерной технике

Тут физику применяют для решения проблем обогащения ядерной энергией.

Физики-ядерщики вместе с физиками-атомщиками изучают строение атома и процессы в нем и не редко делают великие открытия открытия.

Физика в професии инженер-нефтяник

Использование двигателей внутреннего сгорания, развитие машиностроения, авиационной промышленности стало возможным с открытием все новых и новых нефтяных месторождений. Огромные запасы нефти позволяют развивать индустрию.

В этой профессии исследователи открывают все новые способы улучшения добычи нефти и природного газа.

Физика в машино-, авиа- и ракетостроении

Обязательно должен знать физику и понимать суть физических процессов конструктор ракет, космических станций, спутников, противоракетных систем...

Специалист по информатике и компьютерным технологиям

В современной жизни появилась масса средств информационных технологий, с помощью которых можно создавать презентации к урокам, воссоздавать эксперименты и научные открытия древних учёных, и всё это при помощи анимации, растровой и векторной графики, видео. Все эти способы сильно облегчают жизнь современным учителям и преподавателям.

Импульс превращается в цифры, цифры в двоичный код... поэтому физика присутствует в информатике.

Физические явления - это неотъемлемая часть окружающего нас мира, который основан на законах этой науки. Поэтому совершенно неудивительно, что любая профессия, какой бы она ни была, так или иначе связана с физикой.

В будущем я хочу стать врачом. Для этой профессии первостепенное значение имеют такие предметы, как химия и биология, поэтому именно их абитуриенты сдают при поступлении в медицинский вуз. Но физика для доктора также далеко не на последнем месте.

Эта наука лежит в основе работы многих систем организма. Так, наше сердце в комплексе с кровеносными сосудами представляет собой не что иное, как биологический насос, от работы которого зависит, например, давление человека. Визуальную информацию мы воспринимаем с помощью органов зрения, а хрусталик, расположенный внутри каждого глаза, выступает в роли преломляющей свет двояковыпуклой линзы.

На основе законов такого раздела физики, как оптика, работают не только наши глаза, но и многое медицинское оборудование. Прежде всего, это микроскопы, необходимые для изучения строения тканей человеческого тела и микроорганизмов.

Рентген-аппараты и магнитно-резонансные томографы, которые используются в поликлиниках с целью исследования состояния внутренних органов человека, - это также оборудование, работа которого определяется знанием принципов протекания различных физических процессов. Проведение УЗИ тоже стало возможным только после открытия звуковых волн с высокой частотой колебаний (ультразвука).

Особое значение имеет физика для стоматологии. В будущем я хочу стать врачом-ортопедом и заниматься установкой зубных протезирующих конструкций, поэтому для меня очень важно понимание различных свойств твердых тел и изучение законов механики. Без этих знаний я не смогу работать в выбранной профессии, и потому уже сейчас, учась в школе, я делаю все возможное, чтобы освоить трудную, но столь необходимую для врача науку.

1.

2. «Физика в профессии автомеханика»

2.Введение.

Одна из самых нужных профессий современности - профессия автомеханик.

Автомобильный транспорт играет важную роль в обеспечении пассажирских и грузовых перевозок. Автомобильный парк мира с каждым годом все расширяется, а автомеханик для машины - как врач для человека: он и лечит и профилактику проводит. Да и в ДТП одна из причин - это всего неисправность машины.

6) Основы механики, термодинамики, теплотехники.

4. Физика в устройстве автомобиля

Автомобиль буквально нашпигован достижениями физики:

Например, работа двигателя осуществляется благодаря закону термодинамики: газ, полученный при сгорании топлива, расширяясь, двигает поршень .

А) Соблюдать электробезопасность.

При работе с оборудованием 220-380 Вольт применять резиновые перчатки, коврик, следить за

Исправностью изоляции, выдерживать в помещениях влажность не выше 60%.

Б) При сварочных и сверлильных работах защищать глаза от стружки и света щитком,

Одевать рукавицы и спецодежду и по возможности респиратор

В) При работе с аккумулятором и паяльником иметь под рукой средства защиты от

Воздействий кислот

Г) При работе с подъемниками и домкратами устанавливать страховочные козлы.

19. Автомеханик - профессия нужная! Автомеханику без знаний физики нельзя. Физика

Играет главную роль в профессии автомеханика.